Upper semicontinuity of random attractors for stochastic three-component reversible Gray-Scott system

نویسندگان

  • Anhui Gu
  • Hongjun Xiang
چکیده

We consider the upper semicontinuity of the global random attractors for the stochastic three-component reversible Gray–Scott system on unbounded domains when the intensity of the noise converges to zero. 2013 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Attractors for Stochastic Lattice Reversible Gray-scott Systems with Additive Noise

In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

متن کامل

Upper Semicontinuity of Random Attractors for Non-compact Random Dynamical Systems

The upper semicontinuity of random attractors for non-compact random dynamical systems is proved when the union of all perturbed random attractors is precompact with probability one. This result is applied to the stochastic Reaction-Diffusion with white noise defined on the entire space Rn.

متن کامل

upper semicontinuity of attractors for small random perturbations of dynamical systems

The relationship between random attractors and global attractors for dynamical systems is studied. If a partial differential equation is perturbed by an −small random term and certain hypotheses are satisfied, the upper semicontinuity of the random attractors is obtained as goes to zero. The results are applied to the Navier-Stokes equations and a problem of reaction-diffusion type, both pertur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2013